
1

How to: Actually attack
computers at cafes

Felix Ryan

2

Who am I?

- I’m Felix
- I’m a pen tester

3

Why this research?

- Masters degree dissertation
- Client didn’t just take my word for it

- Couldn’t find a tool

4

Open WiFi MitM Condition

5

What can you do with
MitM conditions

- Listen to the communication
- Change the communication

- Stop the communication

6

What I set out to do

- Create evil WiFi networks
- MitM some users

- Grab creds
- Politely inform my client that they were wrong

(and “ner ner nee ner ner”)
- Convinced this would be easy...

7

It turns out that encryption
is a thing…

- can be done at all the layers
- not much plaintext auth these days

- confirmed I needed another way of getting creds

8

The idea

Go from this:

9

The idea

To this:

10

What I actually did

- Used a WiFi Pineapple
- Set up a wireless network to simulate a cafe
- Called it “DANGER ZONE – DO NOT USE”

(and still got random people connecting)

11

It looked a bit like this:

12

Developed a tool

- Butchered someone else’s tool into submission
(Responder.py in particular)

- Added my own code
- Sulked in the corner when it didn’t work

- Repeat
- Eventually have some success

13

My tool

A transparent proxy that injects HTML tags into
HTTP responses such as:

Couldn’t get plaintext creds
Got NetNTLM hashes instead

ETAC = Evil Twin Authentication Capture

14

Windows auth

Windows 7 test machine
Kept with default config

This means IE…
Remember: NetNTLM auth is the goal

15

Windows Auth - The dot rule

I needed a DNS
server

16

The final attack flow

17

The Challenges

So far so good?
Ehhh… not quite

18

HTTP is a pain

- Coding this without many libraries
- Random HTTP status codes

- Different HTTP versions
- HTTP request headers

(Compression / Encoding / Caching / Ranges / Connection status / content types)

- “Normal” error handling
- Differences in declared and transparent proxies

- Response size and browser behaviour
- Chunking

19

Transaction size and chunking

Transfer-Encoding: chunked

1cfe (chunk size markers)

Response ends with
'\r\n0\r\n\r\n'

Transfer-Encoding: chunked

(but no chunk markers)

Response ends with
'\r\n0\r\n\r\n'

Content-Length: 244271

Declared size of response:

Chunked Transfer Encoding (CTE):

20

Successes and failures
- Active Directory joined vs unjoined

[*] HTML poisoning performed (SrcAdd=172.16.42.117 DstHost=stackoverflow.com RxConn=0)
...SNIP...
[SMB] NTLMv2-SSP Client : 172.16.42.117
[SMB] NTLMv2-SSP Username : IE11WIN7\IEUser
[SMB] NTLMv2-SSP Hash :
IEUser::IE11WIN7:1122334455667788:B6EC84566FB6ADFDA7FFD18DB6FD5DF3:010100000000002F5B9F1C37CDD101F
F3B86...SNIP...F31BC8BC3F48005DB1E6B426C66DEBE9EA92316671CC10A001000000000000000000000000000000000
0900260063006900660073002F00680074006D006C0069006E006A006500630074002E006C0061006E0000000000000000
[SMB] Requested Share: \\EVIMACHINE\SHARE

(damn you Kerberos!)

21

Summary

- Tool is on GitHub
- Could develop it further

- AD joined workstation = boo
- Non-AD = yay

22

Questions?

x@yg.ht

https://github.com/yg-ht/ETAC
(moving to gitlab… brb)

Thanks to all those who’s tools I abused

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

